The Degree of Copositive Approximation

John A. Roulier
Department of Mathematics, North Carolina Stote Liniversity, Raleigh, North Carolina 27607
Communicated by Oved Shisho
Received June 4, 1974

1. Introduction

Numerous articles have been written recently on the notions of comonotone and copositive approximation: see [2-6].

We say that two functions f and g are copositive on an interval $[a, b]$ if $f(x) g(x) \geqslant 0$ for all x in $[a, b]$. Let Π_{n} denote the set of algebraic polynomials of degree less than or equal to n and let $|!|$ be the uniform norm on $[a, b]$. Given a continuous function f on $[a, b]$ we define the degree of copositite approximation $\bar{E}_{n}(f)$ as $\inf \left\{|f-p| \mid p \in \Pi_{n}\right.$ and p copositive with f; The degree of approximation to f is

$$
E_{n}(f)=\inf \left\{|f-p!| p \in I I_{n}\right\} .
$$

Passow and Raymon in [6] state the following theorem. See [6] for the definitions of the terms.

TheOrem i. If $f \in C[a, b]$ is proper piecewise monotone with nowanishing peaks then there is a constant d depending on f but not on al such that for n sufficiently large

$$
\begin{equation*}
\bar{E}_{n}(f) \leqslant d n(f: 1 / n) . \tag{I}
\end{equation*}
$$

(w is the modulus of continuity of f on $[a, b]$.)
The main theorem in this paper weakens the condition requiring f to be proper piecewise monotone and gives stronger estimates in many cases.

2. The Main Theorems

Let f be continuous on $[-1 .+1]$ and assume that there are only finitely many points $y_{i}<y_{1}<\cdots<y_{i}$ in $(-1,+1)$ at which f changes sign. Assume
that there are numbers $\epsilon>0$ and $\delta>0$ so that the $k+1$ intervals

$$
I_{i}=\left[y_{i}-\epsilon, y_{i}+\epsilon\right], \quad i=0,1, \ldots, k
$$

are nonoverlapping and contained in $[-1,+1]$ and so that

$$
\begin{equation*}
|f(x)-f(y)| \geqslant \delta|x-y| \tag{2}
\end{equation*}
$$

whenever x and y are in the same $I_{i}, i=0,1, \ldots, k$.
We will call a function f with these properties a properly alternating function.

Theorem 1. Let f be a continuous properly alternating function on $[-1$, $+1]$ with modulus of continuity w. Then there is a constant C depending on f but independent of n such that for n sufficiently large

$$
\begin{equation*}
\bar{E}_{n}(f) \leqslant C\left(w\left(\frac{6 E_{n}(f)}{\delta}\right)+E_{n}(f)\right) \tag{3}
\end{equation*}
$$

(δ above and ϵ below are as in the definition of properly alternating function).

Proof. Let $m=\frac{1}{4} \min \left[\epsilon, \min _{j}\left(\left|y_{j+1}-y_{j}-2 \epsilon\right|\right)\right]>0$. Let $J_{i}=\left[y_{i}-\right.$ $\left.m, y_{i}+m\right]$ for $i=0,1, \ldots, k$.
Let q_{n} be the polynomial of best approximation from I_{n} to f on $[-1,+1]$. Observe that from the definition of a properly alternating function we have that f is either strictly increasing on I_{i} or strictly decreasing on I_{i} depending on how the sign changes at y_{i}.

If f is increasing on I_{i} then for any $x>y$ in J_{i} we have from (2)

$$
\begin{align*}
q_{n}(x)-q_{n}(y) & \geqslant f(x)-f(y)-2 E_{n}(f) \\
& \geqslant|x-y| \delta-2 E_{n}(f) \tag{4}\\
& \geqslant 4 E_{n}(f) \quad \text { if }|x-y| \geqslant 6 E_{n}(f) / \delta
\end{align*}
$$

If f is decreasing on I_{i} then for $x>y$ in J_{i} we have from (2)

$$
\begin{align*}
q_{n}(x)-q_{n}(y) & \leqslant 2 E_{n}(f)+f(x)-f(y) \\
& \leqslant 2 E_{n}(f)-\delta|x-y| \tag{5}\\
& \leqslant-4 E_{n}(f) \quad \text { if }|x-y| \geqslant 6 E_{n}(f) / \delta
\end{align*}
$$

Now define
and

$$
\alpha_{n}(x)=\left(1-\frac{3 \mathrm{E}_{n}(f)}{\delta}\right) x-\frac{3 E_{n}(f)}{\delta}
$$

$$
\begin{equation*}
\beta_{n}(x)=\alpha_{n}(x)+\frac{6 E_{n}(f)}{\delta} \tag{6}
\end{equation*}
$$

It is easy to see that for all x in $[-1,+1]$

$$
\begin{equation*}
-1 \leqslant \alpha_{n}(x) \leqslant x \leqslant \beta_{n}(x) \leqslant 1 \tag{1}
\end{equation*}
$$

Now define

$$
\begin{equation*}
s_{n i}(x)=\frac{\delta}{6 E_{n}(f)} \int_{x_{n}(\alpha)}^{\sigma_{n}(\alpha)} q_{n}(t) d t \tag{8}
\end{equation*}
$$

and choose N_{1} so that $6 E_{n}(f) / \delta<\min (1, m)$ for $n \geqslant N_{1}$.
This together with (6) and (7) show that if $x \in J_{i}$ then both $\alpha_{n}(x)$ and $\beta_{n}(x)$ are in I_{i} for $i=0,1, \ldots, k$.
Observe that

$$
s_{n}^{\prime}(x)=\frac{\delta}{6 E_{n}(f)}\left[q_{n}\left(\beta_{n}(x)\right)-q_{n}\left(\alpha_{n}(x)\right)\right]\left(1-\frac{3 E_{n}(f)}{\delta}\right)
$$

Also for $n \geqslant N_{1}$ we have

$$
1-3 E_{n}(f) / \delta \geqslant \frac{1}{\mathbf{\Sigma}}
$$

These facts together with (4) and (5) show that for $n \geqslant N_{1}$, if x is in y_{i} we have

$$
\begin{equation*}
s_{n}^{\prime}(x) \geqslant \delta / 3 \tag{9}
\end{equation*}
$$

if f is increasing on J_{i} and

$$
\begin{equation*}
s_{n}^{\prime}(x) \leqslant-\delta / 3 \tag{10}
\end{equation*}
$$

if f is decreasing on J_{i}. Now choose $r_{k, n} \in \Pi_{h}$ so that $r_{k \cdot n}\left(y_{i}\right)=-s_{n}\left(y_{i}\right)$ for $i=0,1, \ldots, k$. Let $N_{2}=\max \left(N_{1}, k\right)$. Then for $n \geqslant N_{2}$ we still have (9) and (10). Now define

$$
\begin{equation*}
t_{n}(x)=s_{n}(x)+r_{k, n}(x) \tag{11}
\end{equation*}
$$

Then $t_{n} \in \Pi_{n}$ for $n \geqslant N_{2}$.
Now observe that

$$
f(x)=\frac{\delta}{6 E_{n}(f)} \int_{\alpha_{n}(x)}^{B_{n}(x)} f(x) d t
$$

Hence

$$
\begin{aligned}
f(x) & -s_{n}(x) \\
& =\frac{\delta}{6 E_{n}(f)} \int_{\alpha_{n}(x)}^{\beta_{n}(x)}(f(x)-f(t)) d t+\frac{\delta}{6 E_{n}(f)} \int_{\alpha_{n}(x)}^{s_{n}(x)}\left(f(t)-q_{n}(t)\right) d t
\end{aligned}
$$

Thus from (6) and (7)

$$
\begin{equation*}
\left|f(x)-s_{n}(x)\right| \leqslant w\left(6 E_{n}(f) / \delta\right)+E_{n}(f) \tag{12}
\end{equation*}
$$

Let $D_{n}=w\left(6 E_{n}(f) / \delta\right)+E_{n}(f)$.
Note that

$$
\begin{aligned}
\left|r_{k, n}\left(y_{i}\right)\right| & =\left|f\left(y_{i}\right)-s_{n}\left(y_{i}\right)\right| \\
& \leqslant D_{n}, \quad i=0,1, \ldots, k
\end{aligned}
$$

From the Lagrange interpolation formula it is clear that there is a constant B_{k} depending only on y_{0}, \ldots, y_{k} such that

$$
\begin{equation*}
\left|r_{k, n}(x)\right| \leqslant B_{k} D_{n} \quad \text { on }[-1,+1] \tag{13}
\end{equation*}
$$

for all n.
By the inequality of Markov (see [1])

$$
\begin{equation*}
\left|r_{k, n}^{\prime}(x)\right| \leqslant k^{2} B_{k} D_{n} \tag{14}
\end{equation*}
$$

on $[-1,+1]$ for all n.
Now choose $N_{3} \geqslant N_{2}$ so that $n \geqslant N_{3}$ gives

$$
\begin{equation*}
k^{2} B_{k} D_{n}<\delta / 6 \tag{15}
\end{equation*}
$$

Then on J_{i} we see that for $n \geqslant N_{3}$ the sign of $t_{n}{ }^{\prime}(x)$ is the same as the sign of $s_{n}{ }^{\prime}(x)$ since from (9), (10), (14), (15) we have

$$
\begin{equation*}
\left|s_{n}^{\prime}(x)\right|-\left|r_{k, n}^{\prime}(x)\right| \geqslant \delta / 6 \tag{16}
\end{equation*}
$$

Moreover, we have for $x \in[-1,+1]$ using (11), (12), and (13),

$$
\begin{equation*}
\left|f(x)-t_{n}(x)\right| \leqslant\left(1+B_{k}\right) D_{n} \tag{17}
\end{equation*}
$$

Moreover $t_{n}\left(y_{i}\right)=f\left(y_{i}\right)=0$ for $i=0,1, \ldots, k$.
This guarantees that f and t_{n} are copositive on each $J_{i} i=0,1, \ldots, k$. To complete the proof we will add to t_{n} a certain polynomial that is copositive with f on $[-1,+1]$. From (16) we have for $n \geqslant N_{3}$ and x in J_{i}

$$
\begin{equation*}
\left|t_{n}^{\prime}(x)\right| \geqslant \delta / 6 \tag{18}
\end{equation*}
$$

Define $h_{k}(x)=\left(x-y_{0}\right)\left(x-y_{1}\right) \cdots\left(x-y_{k}\right)$. We may assume that h_{k} and f are copositive on $[-1,+1]$. Otherwise we take $-h_{k}$. Define $\mathscr{B}=[-1,+1]$ $-\bigcup_{i=0}^{k} J_{i}$, and set

$$
\begin{equation*}
\rho=\inf \left\{\left|h_{k}(x)\right| \mid x \in \mathscr{B}\right\}>0 \tag{19}
\end{equation*}
$$

Form

$$
\begin{equation*}
p_{n}(x)=t_{n}(x)+\frac{\left(2+B_{k}\right) D_{n}}{\rho} h_{k}(x) \tag{20}
\end{equation*}
$$

and set $N_{4}=\max \left(N_{3}, k \div 1\right)$. Then for $n \geqslant N_{4}$ we have $p_{n} \in \Pi_{n}$. Let. $C_{b}=\max \left\{h_{k}(x): x \in[-1,-1]\right.$. Then we have from (17) and (20) that

$$
\begin{equation*}
\left|f(x)-p_{n}(x)\right| \leqslant A_{n} D_{n} \tag{21}
\end{equation*}
$$

where

$$
A_{k}=1+B_{k}+\frac{\left(2+B_{k}\right)}{\rho} C_{k}
$$

Moreover if $x \in \mathscr{S}$ we have

$$
\begin{equation*}
\left|\frac{\left(2+B_{k}\right) D_{n}}{\rho} h_{k}(x)\right| \geqslant\left(2+B_{k}\right) D_{n} \tag{22}
\end{equation*}
$$

Clearly if f and t_{n} are copositive at some x, then so are f and p_{n}. Hence, f and p_{n} are copositive on $\bigcup_{i=0}^{k} J_{i}$. If f and t_{n}, are not copositive at some \bar{x} then $\bar{x} \in \mathscr{R}$. Assume without loss of generality that $f(\bar{x}) \geqslant 0$. Then using (17), (20), (22) and the fact that f and h_{k} are copositive we have

$$
\begin{aligned}
p_{n}(\bar{x}) & =t_{n}(\bar{x})+\left(\left(2+B_{k}\right) / p\right) D_{n} h_{h}(\bar{x}) \\
& \geqslant f(\bar{x})-\left|f(\bar{x})-t_{n}(\bar{x})\right|+\left(2+B_{k}\right) D_{n} \\
& \geqslant f(\bar{x})-\left(1+B_{k}\right) D_{n}+\left(2+B_{k}\right) D_{n} \\
& =f(\bar{x})+D_{n}>0 .
\end{aligned}
$$

Hence $f(\bar{x})$ and $p_{n}(\bar{x})$ have the same sign. Thus f and $p_{i l}$ are copositive for $n \geqslant N_{4}$ and the theorem is proved.

It is clear that the class of functions treated in Theorem A is propery contained in the class of properly alternating functions. The following corollary emphasizes the comparison between Theorem A and Theorem 1.

Corollary. If f is a properly alternating function and if $f \in \mathrm{Lip}_{\mathrm{M}} 1$ on $[-1,1]$ then there is a constant B depending on f but independent of n such that

$$
\bar{E}_{n}(f) \leqslant B E_{n}(f) \quad \text { for } n \text { sufficiently large. }
$$

It is easy to see using the classical Jackson's theorems that (23) is better than (1).

The proof of the next theorem is contained in [4] but the theorem is not
stated explicitly there since the emphasis is on comonotone approximation. In the next theorem we allow a sign change to be on an interval. That is, $f(x)=0$ on $[a, b], f(x)<0$ on $[e, a)$, and $f(x)>0$ on $(b, d]$. In this case we will set $C=a+b / 2$ and say f changes sign at C.

Theorem 2. Let f have sign changes at $y_{1}<\cdots<y_{k}$ on $[-1,+1]$ and assume f is continuous on $[-1,+1]$ and $f^{\prime}\left(y_{i}\right)$ exists for $i=1, \ldots, k$. Define $g(x)=f(x) / \prod_{i=1}^{k}\left(x-y_{i}\right)$. Then g is continuous on $[-1,+1]$ and

$$
\begin{equation*}
\vec{E}_{n}(f) \leqslant C E_{n-k}(g) \quad \text { for } n \geqslant k \tag{24}
\end{equation*}
$$

where C depends only on y_{1}, \ldots, y_{k}.
We omit the proof since it is contained in [4] and is, in any event, easy to construct.

References

1. G. G. Lorentz, "Approximation of Functions," Holt, Rinehart \& Winston, New York, 1966.
2. D. J. Newman, E. Passow, and L. Raymon, Piecewise monotone polynomial approximation, Trans. Amer. Math. Soc. 172 (1972), 465-472.
3. E. Passow and L. Raymon, Monotone and comonotone approximation, Proc. Amer. Math. Soc. 42 (1974), 390-394.
4. E. Passow, L. Raymon, and J. A. Roulier, Comonotone polynomial approximation, J. Approximation Theory 11 (1974), 221-224.
5. J. A. Roulier, Nearly comonotone approximation, Proc. Amer. Math. Soc. 47 (1975), 84-88.
6. E. Passow and L. Raymon, Copositive polynomial approximation, J. Approximation Theory 12 (1974), 299-304.
