The Degree of Copositive Approximation

JOHN A. ROULIER

Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27607

Communicated by Oved Shisha

Received June 4, 1974

1. INTRODUCTION

Numerous articles have been written recently on the notions of comonotone and copositive approximation: see [2–6].

We say that two functions f and g are copositive on an interval [a, b] if $f(x) g(x) \ge 0$ for all x in [a, b]. Let Π_n denote the set of algebraic polynomials of degree less than or equal to n and let || || be the uniform norm on [a, b]. Given a continuous function f on [a, b] we define the *degree of copositive approximation* $\overline{E}_n(f)$ as $\inf\{||f-p|| | p \in \Pi_n \text{ and } p \text{ copositive with } f\}$. The *degree of approximation* to f is

$$E_n(f) = \inf\{||f-p|| \mid p \in \Pi_n\}.$$

Passow and Raymon in [6] state the following theorem. See [6] for the definitions of the terms.

THEOREM A. If $f \in C[a, b]$ is proper piecewise monotone with nonvanishing peaks then there is a constant d depending on f but not on n such that for n sufficiently large

$$\overline{E}_n(f) \leqslant dw(f; 1/n). \tag{1}$$

(w is the modulus of continuity of f on [a, b].)

The main theorem in this paper weakens the condition requiring f to be proper piecewise monotone and gives stronger estimates in many cases.

2. The Main Theorems

Let f be continuous on [-1, +1] and assume that there are only finitely many points $y_0 < y_1 < \cdots < y_k$ in (-1, +1) at which f changes sign. Assume

that there are numbers $\epsilon > 0$ and $\delta > 0$ so that the k + 1 intervals

$$I_i = [y_i - \epsilon, y_i + \epsilon], \quad i = 0, 1, ..., k$$

are nonoverlapping and contained in [-1, +1] and so that

$$|f(x) - f(y)| \ge \delta |x - y|$$
⁽²⁾

whenever x and y are in the same I_i , i = 0, 1, ..., k.

We will call a function f with these properties a properly alternating function.

THEOREM 1. Let f be a continuous properly alternating function on [-1, +1] with modulus of continuity w. Then there is a constant C depending on f but independent of n such that for n sufficiently large

$$\overline{E}_n(f) \leqslant C\left(w\left(\frac{-6E_n(f)}{\delta}\right) + E_n(f)\right). \tag{3}$$

(δ above and ϵ below are as in the definition of properly alternating function).

Proof. Let $m = \frac{1}{4} \min[\epsilon, \min_i (|y_{i+1} - y_i - 2\epsilon|)] > 0$. Let $J_i = [y_i - m, y_i + m]$ for i = 0, 1, ..., k.

Let q_n be the polynomial of best approximation from Π_n to f on [-1, +1]. Observe that from the definition of a properly alternating function we have that f is either strictly increasing on I_i or strictly decreasing on I_i depending on how the sign changes at y_i .

If f is increasing on I_i then for any x > y in J_i we have from (2)

$$q_{n}(x) - q_{n}(y) \ge f(x) - f(y) - 2E_{n}(f)$$

$$\ge |x - y| \delta - 2E_{n}(f)$$

$$\ge 4E_{n}(f) \quad \text{if } |x - y| \ge 6E_{n}(f)/\delta$$
(4)

If f is decreasing on I_i then for x > y in J_i we have from (2)

$$q_{n}(x) - q_{n}(y) \leq 2E_{n}(f) + f(x) - f(y)$$

$$\leq 2E_{n}(f) - \delta | x - y |$$

$$\leq -4E_{n}(f) \quad \text{if } | x - y | \geq 6E_{n}(f)/\delta$$
(5)

Now define

$$\alpha_n(x) = \left(1 - \frac{3E_n(f)}{\delta}\right)x - \frac{3E_n(f)}{\delta}$$

$$\beta_n(x) = \alpha_n(x) + \frac{6E_n(f)}{\delta}.$$
 (6)

and

It is easy to see that for all x in [-1, +1]

$$-1 \leqslant \alpha_n(x) \leqslant x \leqslant \beta_n(x) \leqslant 1.$$
⁽⁷⁾

Now define

$$s_n(x) = -\frac{\delta}{6E_n(f)} \int_{x_n(x)}^{\beta_n(x)} q_n(t) dt$$
 (8)

and choose N_1 so that $6E_n(f)/\delta < \min(1, m)$ for $n \ge N_1$. This together with (6) and (7) show that if $x \in J_i$ then both $\alpha_n(x)$ and $\beta_n(x)$ are in I_i for i = 0, 1, ..., k. Observe that

$$s_n'(x) = \frac{\delta}{6E_n(f)} \left[q_n(\beta_n(x)) - q_n(\alpha_n(x)) \right] \left(1 - \frac{3E_n(f)}{\delta} \right).$$

Also for $n \ge N_1$ we have

$$1 - 3E_n(f)/\delta \geq \frac{1}{2}.$$

These facts together with (4) and (5) show that for $n \ge N_1$, if x is in J_i we have

$$s_n'(x) \ge \delta/3$$
 (9)

if f is increasing on J_i and

$$s_n'(x) \leqslant -\delta/3 \tag{10}$$

if f is decreasing on J_i . Now choose $r_{k,n} \in \Pi_k$ so that $r_{k,n}(y_i) = -s_n(y_i)$ for i = 0, 1, ..., k. Let $N_2 = \max(N_1, k)$. Then for $n \ge N_2$ we still have (9) and (10). Now define

$$t_n(x) = s_n(x) + r_{k,n}(x).$$
 (11)

Then $t_n \in \Pi_n$ for $n \ge N_2$. Now observe that

$$f(x) = \frac{\delta}{6E_n(f)} \int_{\alpha_n(x)}^{\beta_n(x)} f(x) dt.$$

Hence

$$f(x) - s_n(x) = \frac{\delta}{6E_n(f)} \int_{\alpha_n(x)}^{\beta_n(x)} (f(x) - f(t)) dt + \frac{\delta}{6E_n(f)} \int_{\alpha_n(x)}^{\beta_n(x)} (f(t) - q_n(t)) dt.$$

Thus from (6) and (7)

$$|f(x) - s_n(x)| \leq w(6E_n(f)/\delta) + E_n(f).$$
(12)

Let $D_n = w(6E_n(f)/\delta) + E_n(f)$. Note that

$$|r_{k,n}(y_i)| = |f(y_i) - s_n(y_i)|$$

 $\leq D_n, \quad i = 0, 1, ..., k.$

From the Lagrange interpolation formula it is clear that there is a constant B_k depending only on $y_0, ..., y_k$ such that

$$|r_{k,n}(x)| \leq B_k D_n \quad \text{on } [-1,+1]$$
(13)

for all n.

By the inequality of Markov (see [1])

$$|r'_{k,n}(x)| \leqslant k^2 B_k D_n \tag{14}$$

on [-1, +1] for all n.

Now choose $N_3 \ge N_2$ so that $n \ge N_3$ gives

$$k^2 B_k D_a < \delta/6. \tag{15}$$

Then on J_i we see that for $n \ge N_3$ the sign of $t'_n(x)$ is the same as the sign of $s'_n(x)$ since from (9), (10), (14), (15) we have

$$|s_n'(x)| - |r'_{k,n}(x)| \ge \delta/6.$$
 (16)

Moreover, we have for $x \in [-1, +1]$ using (11), (12), and (13),

$$|f(x) - t_n(x)| \leq (1 + B_k) D_n.$$
(17)

Moreover $t_n(y_i) = f(y_i) = 0$ for i = 0, 1, ..., k.

This guarantees that f and t_n are copositive on each J_i i = 0, 1, ..., k. To complete the proof we will add to t_n a certain polynomial that is copositive with f on [-1, +1]. From (16) we have for $n \ge N_3$ and x in J_i

$$|t_n'(x)| \ge \delta/6. \tag{18}$$

Define $h_k(x) = (x - y_0)(x - y_1) \cdots (x - y_k)$. We may assume that h_k and f are copositive on [-1, +1]. Otherwise we take $-h_k$. Define $\mathscr{B} = [-1, +1] - \bigcup_{i=0}^k J_i$, and set

$$\rho = \inf\{|h_k(x)| \mid x \in \mathscr{B}\} > 0.$$
(19)

256

Form

$$p_n(x) = t_n(x) + \frac{(2+B_k) D_n}{\rho} h_k(x)$$
(20)

and set $N_4 = \max(N_3, k+1)$. Then for $n \ge N_4$ we have $p_n \in \Pi_n$. Let $C_k = \max\{|h_k(x)| \mid x \in [-1, +1]\}$. Then we have from (17) and (20) that

$$|f(x) - p_n(x)| \leqslant A_k D_n \tag{21}$$

where

$$A_k = 1 + B_k + \frac{(2+B_k)}{\rho} C_k$$

Moreover if $x \in \mathcal{B}$ we have

$$\left|\frac{(2+B_k)D_n}{\rho}h_k(x)\right| \ge (2+B_k)D_n.$$
(22)

Clearly if f and t_n are copositive at some x, then so are f and p_n . Hence, f and p_n are copositive on $\bigcup_{i=0}^k J_i$. If f and t_n are not copositive at some \bar{x} then $\bar{x} \in \mathscr{B}$. Assume without loss of generality that $f(\bar{x}) \ge 0$. Then using (17), (20), (22) and the fact that f and h_k are copositive we have

$$p_{n}(\bar{x}) = t_{n}(\bar{x}) + ((2 + B_{k})/\rho) D_{n}h_{k}(\bar{x})$$

$$\geq f(\bar{x}) - |f(\bar{x}) - t_{n}(\bar{x})| + (2 + B_{k}) D_{n}$$

$$\geq f(\bar{x}) - (1 + B_{k}) D_{n} + (2 + B_{k}) D_{n}$$

$$= f(\bar{x}) + D_{n} > 0.$$

Hence $f(\bar{x})$ and $p_n(\bar{x})$ have the same sign. Thus f and p_n are copositive for $n \ge N_4$ and the theorem is proved.

It is clear that the class of functions treated in Theorem A is properly contained in the class of properly alternating functions. The following corollary emphasizes the comparison between Theorem A and Theorem 1.

COROLLARY. If f is a properly alternating function and if $f \in \text{Lip}_M 1$ on [-1, 1] then there is a constant B depending on f but independent of n such that

$$\overline{E}_n(f) \leqslant BE_n(f)$$
 for *n* sufficiently large. (23)

It is easy to see using the classical Jackson's theorems that (23) is better than (1).

The proof of the next theorem is contained in [4] but the theorem is not

stated explicitly there since the emphasis is on comonotone approximation. In the next theorem we allow a sign change to be on an interval. That is, f(x) = 0 on [a, b], f(x) < 0 on [e, a), and f(x) > 0 on (b, d]. In this case we will set C = a + b/2 and say f changes sign at C.

THEOREM 2. Let f have sign changes at $y_1 < \cdots < y_k$ on [-1, +1] and assume f is continuous on [-1, +1] and $f'(y_i)$ exists for i = 1, ..., k. Define $g(x) = f(x)/\prod_{i=1}^k (x - y_i)$. Then g is continuous on [-1, +1] and

$$\overline{E}_n(f) \leqslant CE_{n-k}(g) \quad \text{for } n \ge k \tag{24}$$

where C depends only on $y_1, ..., y_k$.

We omit the proof since it is contained in [4] and is, in any event, easy to construct.

References

- 1. G. G. LORENTZ, "Approximation of Functions," Holt, Rinehart & Winston, New York, 1966.
- D. J. NEWMAN, E. PASSOW, AND L. RAYMON, Piecewise monotone polynomial approximation, *Trans. Amer. Math. Soc.* 172 (1972), 465–472.
- E. PASSOW AND L. RAYMON, Monotone and comonotone approximation, Proc. Amer. Math. Soc. 42 (1974), 390-394.
- 4. E. PASSOW, L. RAYMON, AND J. A. ROULIER, Comonotone polynomial approximation, J. Approximation Theory 11 (1974), 221–224.
- 5. J. A. ROULIER, Nearly comonotone approximation, Proc. Amer. Math. Soc. 47 (1975), 84-88.
- 6. E. PASSOW AND L. RAYMON, Copositive polynomial approximation, J. Approximation Theory 12 (1974), 299-304.