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1. INTRODUCTION

Numerous articles have been written recently on the notions of comonotong
and copositive approximation: see [2-6].

We say that two functions f and g are copositive on ax interval [a, 6] if
F(xyglx) == 0 for all x in [a, b]. Let I1, denote the set of algebraic poly-
nomials of degree less than or equal to » and et |'|| be the uniform norm on
[a, b]. Given a continuous function f on [a, #] we define the degree of co-
positive approximation E ( f) as inf{, f — pi'| p € I1, and p copositive with f!
The degiee of approximation to fis -

E(f)=inf{lf—p! |pell.

Passow and Raymon in [6] state the following theorem. See 6] for the
definitions of the terms.

TueorEM A.  If fe Cla, b] is proper piecewise monotone with nonvanishing
peaks then there is a constant d depending on f but not on in such that for
sufficiently large

E(f) <dn(f: Iin. {13
{(w is the modulus of continuity of f on [a, b].)

The main theorem in this paper weakens the condition requiring f to be
proper piecewise monotone and gives stronger estimates in many cases.

2. THE MAIN THEOREMS

Let f/ be continuous on [—1. 1] and assume that there are only finttely
many points 1, < y; < - << 3 in (—1. +1) at which fchanges sign. Assume
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that there are numbers ¢ >0 and 6 >0 so that the k + | intervals
Ii:[yi—_eay’iql—s]a l:()a 15---5k

are nonoverlapping and contained in [—1, +1] and so that

lf&x)—fnI=d6lx—yl )

whenever x and y are in the same I;, i = 0, 1,..., k.
We will call a function f with these properties a properly alternating
function.

THEOREM 1. Let f be a continuous properly alternating function on [—1,
+ 1] with modulus of continuity w. Then there is a constant C depending on f
but independent of n such that for n sufficiently large

Ef) < ¢ (w(ED) 4 g (). ®

(6 above and e below are as in the definition of properly alternating
function).

Proof. Let m = 1m1n[e, min; (| ¥j; — ¥ — 2e D1 > 0. Let J, = [y; —
m,y;, +m]fori=0,1,..,
Let ¢, be the polynomial of best approximation from 17, to fon [—1, +1].
Observe that from the definition of a properly alternating function we have
that £ is either strictly increasing on /; or strictly decreasing on I; depending
on how the sign changes at y, .

If fis increasing on [, then for any x > y in J; we have from (2)

4u(x) — qu(¥) Z F() — f(3) — 2E,(f)
Zlx—y106—2E(f) “

If fis decreasing on I; then for x > y in J; we have from (2)

¢n(X) — () <2E(f) +F(x) — f()
S2E(f)—0x—y]| (5)
< —4E(f)  iflx—y| = 6E(f)S
Now define
w9 = (1 - D) 3B
and ‘ (6)
Ba) = a(x) + L) 65'” )
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It is easy to see that for all x in [—1, +1]

< Lx"(x) SX S .Bn(-\-‘) < L

o~
~1

Now define

5 JEN O
CE()
and choose N so that 6E,( f)/0 < min(l, m) forn = N, .
This together with (6) and (7) show that if x € J; then both «,(x) and 5,(x) are

inf;fori=01,.,k.
Observe that

Sulx) = or: @

') = e (f) [4Ba(x)) — qulenlD] {1 — 3E’§~f))_

Also for n = N, we have
1 — 3En(f)/ / 14

These facts together with {(4) and (5) show that for n = N, , if x isin J; we
have

85,'(x) = 8/3 9

if fis increasing on J; and
s, (x) < —8/3 (15)
if £ 1s decreasing on J; . Now choose r, , €1, so that r, (3, = —s,(y,) for

i=0,1,.,k Let N, = max(N,, k). Then for » = N, we still have (9) and
(10). NOW deﬁne

1(x) = sp(x) + rk,‘n(x}- (1)

Then ¢, 11, forn = N,.
Now observe that

) S 2,(z) .
709 = G 7y L 7O

Hence

J(x) — 5q(x)
8, (x) S R

5 N 5 : W s
SETT { Ly O = FO b [0 = gy
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Thus from (6) and (7)
[f(x) — sa(x)] < WOE(f)[3) + E.(f)- (12)

Let D, = w(6E,(f)/8) + E.(f).
Note that

] "z_-,n(}’z:)\ == 1f()'1) - STL(J‘I)‘
<D,, i=01,.k.

From the Lagrange interpolation formula it is clear that there is a constant
B, depending only on y, ,..., y; such that

fre (O < BD, on [—1, 41] (13)

for all n.
By the inequality of Markov (see [1])

| rn(¥)) < K°BuD, (14)

on [—1, +1] for all .
Now choose N; > N, so that n = N; gives

k*B.D, < §/6. (15)

Then on J; we see that for n = N, the sign of t,,(x) is the same as the sign of
s, (x) since from (9), (10), (14), (15) we have

| 5,/ (] — |, 2(x)] = 8/6. (16)
Moreover, we have for x € [—1, +1] using (11), (12), and (13),
| f(x) — (0 < (1 + By) D, . 17)

Moreover t,(3;) = f(y) =0fori =0, 1,..., k.

This guarantees that f and ¢, are copositive on each J; i =0, 1,..., k. To
complete the proof we will add to 7, a certain polynomial that is copositive
with fon [—1, 4 1]. From (16) we have for n 2> Njand xin J;

| £,/ (x)] = 8/6. (18)
Define h,(x) = (x — yo)x — yy) -+ (x — y;). We may assume that 4, and f
are copositive on [—1, +4-1]. Otherwise we take —#;, . Define # = [—1, 4 1]
— U:;D J; , and set

p = inf{] h(x)| | x € B} > 0. (19)
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Form

Pu(X) = £,(x) +

Qlif‘—)& fx) (20)

and set N, = max(Ng,k — 1). Then for » > N, we have p,efl, . Let
O, = max{ f,(x) | xe[—1, =1]\. Then we have from (17) and (20) that

LX) — pux)) < A4,Dy 25
where
2
I e
[0
Moreover if x € Z we have
[ .
|(L%")-91h,(r)| Q2+ B)D,. 22)

Clearly if fand ¢, are copositive at some x, then so are faud p, . Hence, fand
P are copositive on Jt_,J;. If fand 7, are not copositive at some ¥ then
X € #. Assume without loss of generality that f(X) = 0. Then using (17}, (20},
(22) and the fact that fand A4, are copositive we have

Pu®) = 1(%) + (2 + By)/p) Dol %)
> f(®) — | f(® — 1) + Q2 + By D,
>f(X) ~ (1 - BYD, + (2 B) D,
— f(®) + D, > 0.

Hence f{X) and p,(X) have the same sign. Thus fand p, are copositive for
7 2= Ny and the theorem is proved. J

It is clear that the class of functions treated in Theorem A is properiy
contaired in the class of properly alternating functions. The following
corollary emphasizes the comparison between Theorem A and Theorem 1.

COROLLARY. If f is a properly alternating function and if f<Lipy, 1 on
[— 1, ] then there is a constant B depending on f but independent of n such that

ELFf)Y<BEJSf)  for n sufficieatly large. {23}
it is easv to see using the classical Jackson's theorems that {23} is better
than (1).

The proof of the next theorem is contained in [4] but the theorem is not
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stated explicitly there since the emphasis is on comonotone approximation.
In the next theorem we allow a sign change to be on an interval. That is,
J(x) =0o0n [a, b], f(x) <0 on e, a), and f(x) > 0 on (b, d]. In this case we
will set C = a + b/2 and say f changes sign at C.

THEOREM 2. Let f have sign changes at y; << -+ <y, on [—1, +1] and
assume f is continuous on [—1, +1] and f'(y;) exists for i = 1,..., k. Define
gx)=f (x)/]_[?=1 (x — ¥)). Then g is continuous on [—1, +1] and

En(f) < CEn—k( g) fOI' n > k (24)

where C depends only on y; ,..., ¥y, .
We omit the proof since it is contained in [4] and is, in any event, easy to
construct.
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