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1. INTRODUCTION

Numerous articles have been written recently on the notions of comonotone
and copositive approximation: see [2-6].

We say that two functions I and g are coposithe on an interval [a, oj if
f(x) g(x) > 0 lor all x in [a, b]. Let FIn denote the set of algebraic poly­
nomials of degree less than or equal to n and let I~ I: be the uniform norm on
[a, b]. Given a continuous function I on [a, b] we define the degree of co­
positire approximation En(f) as inf{lil - p i' Ip E FIn and p copositive witl, f:
The degree of approximation to f is

EnU) = inf{1If - p I Ip E II).

Passow and Rayman in [6] state the following theorem. See [6] for the
definitions of the terms.

THEOREM A. !ffE era, b] is proper piecell"ise monotone H'irh nOl1l'anishing
peaks then there is a constant d depending 0/1 I but not on it such that for 11

sufficieilt~1' large

Er,(f) ~ dll'(f: lin). (I)

(11' is the modulus of continuity off on [a, b].)
The main theorem in this paper weakens the condition requiring f to be

proper piecewise monotone and gives stronger estimates in many cases.

2. THE MAIN THEOREMS

Let f be continuous on [-I. +-1] and assume that there are only finitely
many points Yo < Y1 < .. , <)'1.' in (-1. + 1) at whichfchanges sign. Assume
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that there are numbers E> ° and 8 > ° so that the k + 1 intervals

Ii = [Yi - E,Yi + E], i = 0, 1, ... , k

are nonoverlapping and contained in [-1, +1] and so that

If(x) - f( y)[ ~ 8 [ x - y I (2)

whenever x and yare in the same Ii , i = 0, 1, ... , k.
We will call a function f with these properties a properly alternating

fimction.

THEOREM 1. Let f be a continuous properly alternating function on [-1,
+1] with modulus of continuity w. Then there is a constant C depending on f
but independent of n such that for 11 sufficiently large

(3)

(8 above and E below are as in the definition of properly alternating
function).

Proof Let m = t min[E, min; (I Yi+l - Yj - 2E I)] > 0. Let Ji = [Yi ­
m, )'i + m] for i = 0, 1,... , k.
Let q n be the polynomial of best approximation from II" to f on [-1, -:- 1].
Observe that from the definition of a properly alternating function we have
that f is either strictly increasing on Ii or strictly decreasing on Ii depending
on how the sign changes at Yi .

Iffis increasing on Ii then for any x > y in Ji we have from (2)

q,ix) - qn(Y) ?:: f(x) - fey) - 2Eif)

?:: I x - Y I 8 - 2En(f) (4)

~ 4En(f) if I x - Y I ?:: 6En(f)/8

Iffis decreasing on Ii then for x> Y in Ji we have from (2)

qn(x) - qn(Y) ~ 2E,,(f) + f(x) - fey)

~ 2En(f) - 8 I x - y I (5)

~ -4En(f) if I x - y I ~ 6E,,(f)/8

Now define

and

, ( ) = (1 _ 3E"(f)) _ 3EnCf)
a" x, 8, x 8

f3n(x) = a,nCx) + 6E'8(f)

(6)
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It is easy to see that for all x in [-1, +1]

Now define
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and choose N l so that 6En(J)jo < min(l, m) for n ~ N l .

This together with (6) and (7) show that if x E J i then both exn(x) and (3n(x) are
in Ii for i = 0, 1, ... , k.
Observe that

'( ') _ 0 [/P ( » _ I. ( ,»1 i 1 _ 3E,,(f))
Sn x - 6EnCf) q,,~fJn X qn,Oi. n ·\ J I, (3'

Also for n ~ N l we have

1 - 3En(J)jo ~ }.

These facts together with (4) and (5) show that for 11 ?:: N l , if x is in .Ii we
have

ifJ is increasing on J i and

S,,'(x) :(;; -b/3

iQ\
\~ J

(10)

ifJis decreasing on J;. Now choose t",n En" so that tk.n(Y;) = -sly;} for
i = 0, 1,... , k. Let N 2 = max(Nl , k). Then for 11 ?:: N 2 we still have (9) and
(10). Now define

(11)

Then t n Ell" for 11 ~ N2 •

Now observe that

Hence

I(x) - sIlex)

-:c-=c-0o-=- ((x) (f(x) _ f(t» dt + [) (J') (j(t) - qn(t)) dt.
6Er,(f) ·~"c() 6E,,(f) -",,<"1



256

Thus from (6) and (7)
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If(x) - Sn(X)j ~ w(6En(f)/0) + E n( f).

Let D n = w(6En(f)/0) + En(f).
Note that

i = 0,1,... , k.

(12)

From the Lagrange interpolation formula it is clear that there is a constant
B k depending only on)'o ,..., Yk such that

on [-1, +1] (13)

for all n.
By the inequality of Markov (see [1])

on [-1, +1] for all n.
Now choose N a :?= N 2 so that n :?= N a gives

(14)

(15)

Then on J i we see that for n :?= N a the sign of tn'(x) is the same as the sign of
sn'(x) since from (9), (10), (14), (15) we have

I sn'(x)! - I r;,n(x)1 :?= 0/6.

Moreover, we have for XE [-1, +1] using (11), (12), and (13),

I f(x) - t,/x) 1 ~ (1 + Bk ) D n •

(16)

(17)

Moreover tn(y;) = fey;) = °for i = 0, 1, ... , k.
This guarantees that f and t n are copositive on each J; i = 0, 1, ... , k. To
complete the proof we will add to t" a certain polynomial that is copositive
withfon [-1, +1]. From (16) we have for n :?= Na and x in J i

I tn'(x)[ :?= 0/6. (18)

Define h,lx) = (x - Yo)(x - Yl) ... (x - )'k)' We may assume that h~ and f
are copositive on [-1, +1]. Otherwise we take -hIe . Define :JlI = [-1, + 1]

It
- U;~o J; , and set

p = inf{j h..(x) 1 1 x E:JlI} > O. (19)
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(20)

and set NJ = max(N3 , k --'-- I). Then for II _~'o NJ we have Pn Ell". Let
Ch = max{ lIk(x)' ! x E [-1, -'- 1]:. Then we have from (17) and (20) that

(21)

where

A 1 , B + (2 + B,) ~,,= T k LA'
P

Moreover if x E:!li we have

I (2 + Bk ) D n 1 ( ) 'I . 2 B . DI lie X ?- ( + rJ ".
, p

(22)

Clearly iffand tTl are copositive at some x, then so arefandp" . Hence,jand
p" are copositive on U~=o J,.. Iff and t" are not copositive at some 5: then
xE YJ. Assume without loss of generality thatf(x) ?: O. Then using (17), (20),
(22) and the fact thatfand h/c are copositive we have

p,,(X) = t,,(x) + «2 + B/,)/p) Dnhk(x)

~ f(x) - ! f(.x) - t,,(X)! + (2 + Bd D"

?: fUO - (1 + B/c) D" + (2 + B/:) D"

=f(x) + D" > O.

Hence f(.x) and p,,(x) have the same sign. Thus f and p" are copositive for
11 ?: N J and the theorem is proved. I

It is clear that the class of functions treated in Theorem A is properly
cOlltaiEed in the class of properly alternating functions. The following
corollary emphasizes the comparison between Theorem A and Theorem 1.

COROLLARY. If f is a properly alternating jill1ctioll and if f E Lipu 1 on
[-1, I] then there is a constant B depending on f but independent of11 such that

for n sufficiently large. (23)

It is easy to see using the classical Jackson's theorems that (23) is better
than (1).

The proof of the next theorem is contained in [4J but the theoren:: is nct
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stated explicitly there since the emphasis is on comonotone approximation.
In the next theorem we allow a sign change to be on an interval. That is,
f(x) = 0 on [a, b],f(x) < 0 on [e, a), andf(x) > 0 on (b, d]. In this case we
will set C = a + bj2 and sayf changes sign at C.

THEOREM 2. Let f have sign changes at J'I < ... < Yk on [-1, + l] and
assume fis continuous on [-1, +1] and F(y;) exists for i = 1, ... , k. Define
g(x) = f (X)jn~~l (x - Yi)' Then g is continuous on [-1, +l] and

for n ~ k (24)

where C depends only on Y1 ,..., Yk .
We omit the proof since it is contained in [4] and is, in any event, easy to

construct.
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